

Research Project EASA.2008/6

SIoBiA - Safety Implication of Biofuels in Aviation

Disclaimer

This study has been carried out for the European Aviation Safety Agency by an external organization and expresses the opinion of the organization undertaking the study. It is provided for information purposes only and the views expressed in the study have not been adopted, endorsed or in any way approved by the European Aviation Safety Agency. Consequently it should not be relied upon as a statement, as any form of warranty, representation, undertaking, contractual, or other commitment binding in law upon the European Aviation Safety Agency.

Ownership of all copyright and other intellectual property rights in this material including any documentation, data and technical information, remains vested to the European Aviation Safety Agency. All logo, copyrights, trademarks, and registered trademarks that may be contained within are the property of their respective owners.

Reproduction of this study, in whole or in part, is permitted under the condition that the full body of this Disclaimer remains clearly and visibly affixed at all times with such reproduced part.

SAFETY IMPLICATION OF BIOFUELS IN AVIATION

Thomas Esch Harald Funke Peter Roosen

Aachen University of Applied Sciences

EASA Report No. EASA.2008.C51 compilation date July 7, 2010

Keywords

General Aviation, safety, gasoline, petrol, ethanol, blending, biofuels, MOGAS, AVGAS, E-0, E-5, E-10, E-15, aircraft airworthiness, water, solved water detection, gasoline mixing, volatility, vapour pressure, vapour locking, long-term storage, material compatibility, carburettor icing, gasoline turbidity, phase separation, life-cycle analysis

Contents

A	cknov	vledgem	ients	11	
1	Intr	oductio	n and Outline of Work	12	
2	Sun	nmary and Recommendations		14	
3	Ope	erating 1	Existing Engines with Ethanol-Admixed Fuels	17	
	3.1	Defini	tion of an "Old" Engine	17	
	3.2	Survey	y of Aircraft Frames and Engines Authorized for MOGAS Operation	17	
	3.3	Legisl	ative and Practical Boundary Conditions for Biogenic Components Admixing	21	
		3.3.1	Usage Statistics of Various Fuel Types	23	
	3.4	Aircra	ft Fitness for Ethanol Admixtures	25	
4	Dete	erminat	ion of the Status Quo in General Aviation	26	
	4.1	Gasoli	ne Types	26	
		4.1.1	Historic Development of Gasolines and their Alcohol Admixtures	26	
		4.1.2	Prevailing Legal Boundary Conditions and Norms for Vehicle Gasolines	28	
		4.1.3	Assessment of Knocking Properties for Gasolines by Octane Numbers	32	
	4.2	Synop	tical Statistical Data on General Aviation (T 1)	35	
5	Scie Avia	entific an ation (T	nd Technical Boundary Conditions for Ethanol-Admixed Gasoline Usage in 1)	in 38	
	5.1	Water-	Induced Phase Separation in Gasoline-Ethanol Mixtures	38	
	5.2	Vapou	r Locking Potential of Mixtures of Ethanol-Admixed Gasolines	43	
	5.3	Evapo	ration Enthalpy Effects	47	
	5.4	Comp	atibility of Fuel System and Engine Materials with Ethanol Content in Fuel .	48	
		5.4.1	Metallic components	49	
		5.4.2	Plastics, Elastomers and Glues	50	
6	Asse	essment	of Danger Potentials Attributed to Gasoline Ethanol Admixtures	51	
	6.1	Failure	e Mode and Effects Analysis (T 7)	51	
		6.1.1	Methodology and Approach	51	
		6.1.2	Overall Results of the Failure Mode and Effects Analysis	53	
		6.1.3	FMEA Conclusions	61	
	6.2	Task S	Spanning Activities for Experimentation	63	

	6.3	Analys	sis of Phase Separation Hazard (T 2a, 2c)	64
		6.3.1	Methodology and Approach	64
		6.3.2	High-Altitude Flight Experiments for Cool-Down Experiments Boundary Conditions Determination (T 2a)	64
		6.3.3	Tank Air Throughput During a Flight (T 2a)	66
		6.3.4	Determination of Compositional Changes in Gasolines Stored in Aircraft Tanks for Prolonged Periods (T 2c)	67
		6.3.5	Onset of Hazing in Custom Mixed Ethanol-Containing Gasolines (T 2a)	72
		6.3.6	Phase Separation: Conclusion (T 2a)	74
	6.4	Analys	sis of Carburettor Icing Hazard (T 2b)	76
		6.4.1	Methodology and Approach	76
		6.4.2	Temperature Drop Determination in a ROTAX Engine	76
		6.4.3	Temperature Drop Determination in a Lycoming O 360 A1A Engine	77
		6.4.4	Icing: Conclusions	79
	6.5	Analys	sis of Intensified Vapour Locking Hazard Caused by Gasoline Mixing	80
		6.5.1	Fuel Heat-Up Experiments with a MORANE MS 893 E-D Aircraft (T 3)	81
		6.5.2	Investigation of Pressure Drops in the MORANE Fuel System Under Oper- ating Conditions (T 3)	84
		6.5.3	Vibration Measurements in the MORANE Fuel System (T 3)	85
		6.5.4	Vapour Locking Experiments on a Custom Test Rig (T 3)	86
		6.5.5	Assessment of a Common Gasoline Volatility Test Device (T 3)	92
		6.5.6	Vapour Lock: Conclusions	93
	6.6	Materi	al Compatibility of Common Constructive Materials for Aircraft Parts (T 4).	93
		6.6.1	Approach / Methodology	93
		6.6.2	Report on Plastic Materials Compatibility with Ethanol-Admixed Gasolines	94
		6.6.3	Survey on Deployed Materials for Fuel Systems	120
		6.6.4	Conclusions	125
7	Met	rologica	al Aids for Gasoline Composition Assessment (T 6)	126
	7.1	Detern	nination of an Ethanol Share in Gasoline	126
		7.1.1	Colour Indicator Method	126
		7.1.2	Ethanol Extraction by Water	127
	7.2	Detect	ion of Solved Water	128
		7.2.1	Chemical Water Detection	129
		7.2.2	Optical Water Detection	131

		7.2.3 Electrical Water Detection	132
		7.2.4 Water detection by molecule-specific adsorption	133
	7.3	B Detection of Solved Water: Conclusion	135
8	Life	fe-Cycle Analysis of Ethanol-Admixed Gasolines (T 5)	137
	8.1	Approach / Methodology	137
	8.2	2 Experimental Investigation of Exhaust Gas Emissions for a ROTA	x 912 ULS Engine 138
	8.3	B Life Cycle Analysis of Measured Exhaust Gas Emissions of the R	OTAX 912 Engine 140
	8.4	Conclusions	
Re	eferen	ences	144
A	Engi	igines and Cells Certified by the United States FAA	146
B	Stati	atistical Data on General Aviation and Ultralight Aircraft (T 1)	154
С	Tabı	bulated FMEA Results	160
D	Task	sk Spanning Activities for Experimentation	196
	D.1	1 Acquisition and Handling of Test Fuels	
	D.2	2 Instrumentation of ACUAS's flying lab, a MORANE MS 893 E-D	200
	D.3 Setup, Instrumentation and Test Matrix of a Test-Rigged ROTAX 912 ULS E in Propeller Operation		912 ULS Engine
	D.4	4 Custom Designed Test Rig for Vapour Locking and Water Detecti	on Experimentation205
		D.4.1 Rig Control	
		D.4.2 Procedures of Test Rig Operation for Nucleation Assessme	ent 208
		D.4.3 Functions	
		D.4.4 Measurement Options	
		D.4.5 Environment Protection and Safety Arrangements	
		D.4.6 Bubble Sensor Design	
		D.4.7 Calibration of the Test Rig	
E	Life-	fe-Cycle Analysis of Ethanol-Admixed Gasolines — Report by LUD ^v MTECHNIK	WIG BÖLKOW SYS- 213
	- 2111		210
F	Key	eywords and Abbreviations Index	277

List of Figures

1		00
1	Development of biogenic fuel shares from 2007 to 2009 in Germany	23
2	Ethanol content in random German Super Plus gasoline probes taken in June 2009	24
3	Shares of different fuel types (Diesel fuel excluded) for 2008 in Germany. The share titled "Automotive Petrol Fuel" also contains the amount of gasoline taken for aviation purposes, which is smaller than the AVGAS share (see Sect. B). Source: Mineralölwirtschaftsverband Deutschland	24
4	Ratio of Super Plus RON 100 to Super RON 98 gasolines	25
5	Qualitative evaporation curves for various gasoline types and two jet fuels	30
6	DVPE values of random test samples, June 2009	32
7	Octane numbers of 21 gasoline test samples and SIOBIA standard gasoline	34
8	German and United Kingdom numbers for the aircraft categories of interest. No distinction is made with respect to used fuel type.	36
9	Estimated European total numbers for the aircraft categories of interest	36
10	Graphical display of the distribution of small aircraft in Europe	37
11	Ternary diagram for the substances gasoline, water and ethanol	39
12	Maximum water concentrations in different gasoline/ethanol mixtures	40
13	Measured water concentrations in different commercially offered gasolines	41
14	Binodal and spinodal limit curves in a ternary GEW diagram	42
15	Dependence of static vapour pressure on the amount of admixed ethanol	44
16	Dependence of dynamic vapour pressure on the amount of admixed ethanol	45
17	Mixing gasoline types with differing ethanol admixtures	46
18	DVPE values of 21 test samples taken at different gasoline stations	46
19	Enthalpy of vaporization for ethanol admixed gasoline blends	48
20	Temperature/humidity domains for increased danger of carburettor icing	49
21	Hard plastics typology pyramid	51
22	FMEA objectives overview	52
23	FMEA risk attribution classes overview	53
24	FMEA issues categories overview	54
25	Principal experimentation objects	63
26	Flight test card for tank heat drain experiments	65
27	Temperature developments at different positions on a MORANEfuel tank surface	65
28	Temperature developments inside a MORANEfuel tank	66
29	Temperature crossover point inside a MORANEfuel tank	67

30	Air ingestion by tank ventilation	68
31	Storage tank design	69
32	Normalized residual gasoline masses observed for the different storage tanks	70
33	Development of water contents for gasoline tanks stored under differing ambient conditions	71
34	Ambient humidity and temperature conditions for the gasoline storage experiment .	72
35	Onset of phase separation hazing in water admixture and cool-down experiments .	73
36	Three-dimensional approximation plane of turbidity onset	74
37	ROTAX 912 ULS temperature drop in the intake manifold, full load	76
38	ROTAX 912 ULS temperature drop in the intake manifold, zero load	77
39	Morane icing test setup for operation with ethanol admixed fuels	78
40	Temperature drop in a Lycoming O 360 A1A engine	79
41	Flight Test Card for a heavy load circuit heat-up experiment	82
42	Development of fuel hose temperatures near to the engine for consecutive starts and fast touch-downs	82
43	Fuel hose temperatures near to engine for low service ceiling starts and touch-downs	83
44	Dynamic pressure drops in the MORANE fuel system	84
45	Vibration frequencies and strengths in the MORANE fuel system	86
46	Viewport bubble images in test rig experiments	87
47	Bubble nascence of pure substances compared to calibration curves	87
48	Bubble sensor readout field for AVGAS	88
49	Bubble sensor readout field for E-0 and E-5	89
50	Bubble sensor readout field for E-10 and E-15	90
51	Pressure / Temperature limits for low bubble incidence limits	91
52	Pressure / Temperature limits for high bubble incidence limits	91
53	Hodges tester for gasoline volatility assessment.	92
54	Temperature resistance of elastomers	101
55	Oil resistance of elastomers	101
56	Gasoline and ethanol resistance of elastomers	102
57	Classification of thermoplastics	103
58	Temperature resistance of thermoplastics	113
59	Resistance of thermoplastics against gasoline and alcohol / ethanol	114
60	Resistance of thermosettings against gasoline and alcohol / ethanol	116
61	Results of compabitility tests of a fluorocarbon elastomer	118

62	Realisation of a test for environmental stress cracking	119
63	Materials questionnaire tree (partial)	121
64	Decrease of materials general questionnaire participation	122
65	Production areas of questionnaire participants	123
66	Distribution of materials for aviation parts	123
67	Estimate of ethanol admixture effect on aviation affairs	124
68	Valuation of potential consequences of ethanol admixture on aviation parts	124
69	Sensitivity determination schema for an ethanol detection kit working on colour change reaction.	126
70	Water/ethanol mix excess volume	127
71	Maul's Fuel-Alk Tester	128
72	Karl-Fischer water titration	130
73	Electrical water detection in E-0	132
74	Zeolite water absorption experiment	134
75	Zeolite water absorption evaluation	135
76	Flight profile for comparative LCA studies	138
77	ROTAX exhaust temperatures with ethanol admixed fuels	139
78	ROTAX NO _x emissions with ethanol admixed fuels	140
79	Pathways and by-effects for biogenic ethanol production	140
80	Well to tank greenhouse gas emission analysis results	141
81	Well to propeller greenhouse gas emission analysis results	142
82	Graphical compilation of European General Aviation aircraft numbers	155
83	Comparison of realized vs. potential MOGAS aircraft (Germany)	155
84	German and United Kingdom numbers for the aircraft categories of interest. No distinction is made with respect to used fuel type.	157
85	Estimated European total numbers for the aircraft categories of interest	157
86	German MOGAS operated aircraft engines	158
87	Graphical display of the distribution of small aircraft in Europe	159
88	Ethanol contents of 23 random commercial vehicle gasoline samples	198
89	AcUAS' flying laboratory MORANE MS 893 E-D	200
90	Schematic of the MORANE fuel system	201
91	ROTAX 912 ULS on test rig	203
92	ROTAX 912 ULS measurement points for temperature drop and exhaust gas com- position determination	204

93	Schematic of the vapour lock test rig with its fuel conditioning instrumentation	205
94	Actual vapour lock test rig with its fuel conditioning elements in place	207
95	Example screen for the parameter setting of automatized test runs of the test rig	209
96	Bubble nascence of pure substances compared to calibration curves	211

List of Tables

1	National targets for renewable sources utilization in 2020	22
2	German quotas for biogenic fuel admixtures for the years 2007 — 2015	22
3	Properties of DIN EN 228 "Super lead-free" and "Super Plus lead-free" gasolines .	28
4	Physical and chemical properties of usual gasolines and frequent additives (Data compiled from various sources).	29
5	Volatility classes according to DIN EN 228	31
6	Fugacity classes effective in the course of the year in Germany	31
7	Typical densities of vehicle gasolines	32
8	Octane numbers and densities of typical gasolines and other pure substances	34
9	Octane number of various pure substances or mixtures relevant to gasolines	35
10	Different polymer classes	95
11	Common Elastomers	96
12	Exemplary Trade Marks of Elastomers	97
13	Exemplary Trade Marks of Elastomers (continued)	98
14	Properties of elastomers	99
15	Properties of elastomers (continued)	100
16	Common thermoplastics	104
17	Exemplary trade marks of thermoplastics	105
18	Exemplary trade marks of thermoplastics (continued)	106
19	Exemplary trade marks of thermoplastics (continued)	107
20	Exemplary trade marks of thermoplastics (continued)	108
21	Properties of thermoplastics	109
22	Properties of thermoplastics (continued)	110
23	Properties of thermoplastics (continued)	111
24	Properties of thermoplastics (continued)	112
25	Common thermosettings	115
26	Abundancy matrix for zeolite water absorption tests	133
27	Tabular compilation of European aircraft numbers	156
28	Fuel certificate values for the SIOBIA experimentation base fuel	197
29	Physical and chemical composition of custom mixed Exx gasolines	199
30	Locations and types of sensor instrumentation as applied to the MORANE	202
31	Boiling pressures of test rig calibration substances	211

Acknowledgements

This report was compiled by a consortium of cooperation partners headed by Aachen Institute of Applied Sciences, consisting of Aachen University of Applied Sciences, Bosch General Aviation Technology GmbH, BRP-Rotax GmbH & Co KG, g.o.e.the, ISP GmbH, Ludwig Bölkow Systemtechnik GmbH, PetroLab GmbH, SGS Institut Fresenius GmbH, and Total Deutschland GmbH.

The work was supervised by an international project steering committee headed by Mr. Kleine-Beek (EASA). Further committee participants were Clément Audard (EASA), Stefan Ebert (EASA), Erika Herms (EASA), Werner Hoermann (EASA), Barry Plumb (Historic Aircraft Association, Light Aircraft Association, United Kingdom), Henk Pruis (EASA), Walter Schiller (Luftfahrtbundesamt, Germany), Rudi Schuegraf (Europe Air Sports and Deutscher Aero Club e.V.), and John Thorpe (General Aviation Safety Council, United Kingdom).

In addition, an advisory circle of EASA supported the information collection for some of this report's topics.

Many cooperation partners contributed material necessary for the experimentation documented in this report: Total Deutschland GmbH supplied the experimenters with a sufficient amount of MOGAS (principally vehicle gasoline of Super Plus specification, but stringently certified for aviation purposes, see also Appendix F) as well as statistical data free of charge and supported the FMEA with fuel and lubrication experts. Crop Energies provided the required amount of pure bioethanol necessary for custom admixing, also free of charge. Experts of Robert Bosch GmbH cross-checked the study of SGS on fuel system material properties and suggestions. The German Mineralöl-Wirtschaftsverband provided valuable up-to-date statistical data on the consumption of gasoline sorts. W. Maul contributed an gasoline ethanol admixture test box free of charge. The Chair for Technical Thermodynamics, RWTH Aachen, supported the work by providing experimental facilities and support for the zeolite experiments on water absorption from gasoline.

1 Introduction and Outline of Work

Biofuels potentially interesting also for aviation purposes are predominantly liquid fuels produced from biomass. The most common biofuels today are biodiesel and bioethanol. Since diesel engines are rather rare in aviation this survey is focusing on ethanol admixed to gasoline products.

The Directive 2003/30/EC of the European Parliament and the Council of May 8th 2003 on the promotion of the use of biofuels or other renewable fuels for transport encourage a growing admixture of biogenic fuel components to fossil automotive gasoline. Some aircraft models equipped with spark ignited piston engines are approved for operation with automotive gasoline, frequently called "MOGAS" (motor gasoline). The majority of those approvals is limited to MOGAS compositions that do not contain methanol or ethanol beyond negligible amounts. In the past years (bio-)MTBE or (bio-)ETBE have been widely used as blending component of automotive gasoline whilst the usage of low-molecular alcohols like methanol or ethanol has been avoided due to the handling problems especially with regard to the strong affinity for water. With rising mandatory bio-admixtures the conversion of the basic biogenic ethanol to ETBE, causing a reduction of energetic payoff, becomes more and more unattractive. Therefore the direct ethanol admixture is accordingly favoured.

Due to the national enforcements of the directive 2003/30/EC more oxygenates produced from organic materials like bioethanol have started to appear in automotive gasolines already. The current fuel specification EN 228 already allows up to 3 % volume per volume (v/v) (bio-)methanol or up to 5 % v/v (bio-)ethanol as fuel components. This is also roughly the amount of biogenic components to comply with the legal requirements to avoid monetary penalties for producers and distributors of fuels.

Since automotive fuel is cheaper than the common aviation gasoline (AVGAS), creates less problems with lead deposits in the engine, and in general produces less pollutants it is strongly favoured by pilots. But being designed for a different set of usage scenarios the use of automotive fuel with low molecular alcohols for aircraft operation may have adverse effects in aviation operation. Increasing amounts of ethanol admixtures impose various changes in the gasoline's chemical and physical properties, some of them rather unexpected and not within the range of flight experiences even of long-term pilots.

After a frame-setting failure mode and effects analysis (FMEA) that highlighted the predominant threats of ethanol present in future MOGAS sorts the most problematic objectives have been investigated in further detail, both by theoretical investigations and practical exemplary flight and test rig experiments. Even if the general level of pollutant emissions is usually reduced by utilization of biogenic components in the fuel it cannot be excluded straight away that also undesired side-effects, both on a local and global scale, may be incurred, e.g. by super- or sub-stoichiometric combustion typical in aviation operation. Accordingly, another aspect under investigation is the life cycle analysis of the usage of ethanol admixed gasoline for aviation purposes.

Lastly, prior reports identified water as one of the most problematic substances for fuel handling and utilization in the area of aviation. There is no simple, practical measurement tool for the assessment of solved water content in gasoline so far, however. Accordingly it is one of the aims of this report to identify potential respective measurement procedures that deem promising for a development of such instrumentation.

The EASA call for tenders, based on previous information gathering, already collected most of these issues and formulated several basic objectives. The results of this report necessitated a

slightly different internal logical structure to adequately organize the acquired knowledge, though. Therefore the referencing of the tender's topics is included in the individual section headings:

- T 1: Literature scan and statistical data gathering
- **T 2a:** Phase separation
- T 2b: Icing
- T 2c: Long term storaging of gasoline
- T 3: Vapour locking
- **T 4:** Compatibility of materials
- **T 5:** Life cycle analysis of ethanol admixed gasolines
- **T 6:** Potential methods of water in gasoline detection
- **T 7:** FMEA on functions and parts

The sections have been assembled in a different order that is more oriented towards easier reading and logical interconnection of topics. The main part of the report is followed by a series of annexes documenting the immediate work of cooperation partners, and additional tabulated results referenced in the main part.

2 Summary and Recommendations

In its effort to introduce regenerating and hence sustainable energy resources into the existing combustibles mix, recent European legislation enforces the admixture of biogenic fuels into conventional fossil gasoline. For economic reasons this is, as of today, mainly ethanol. Compared to the fossil gasoline ingredients ethanol has a different chemical structure, leading to a potentially dangerous physico-chemical behaviour, especially in the presence of water. As there is a stronger economically driven tendency to use vehicle gasolines as aviation fuel this may lead to potentially dangerous scenarios especially in the operation of the smaller General Aviation aircraft.

The SIOBIA study addresses these scenarios by an in-depth study on the various potential threats imposed by ethanol admixtures up to 15 % v/v.

First, a failure mode and effects analysis has been performed. For the current fleet of General Aviation aircraft the associated individual threats (phase separation, vapour locking, icing, material compatibility) were confirmed on the parts and functional levels by an expert group. The span of risks covers the range of "just a nuisance" to "deadly dangerous if not adequately and pro-actively handled". For the major threats a clustering of recommendations for a further treatment of the identified issues has been given.

A statistical analysis of European aircraft numbers and types, reconciling several base data sets on European General Aviation, lead to an assessment of the number of potentially affected aircraft. About 20,000 aircraft ($\approx 10\%$) throughout Europe are either directly or potentially endangered by the various negative effects of an ethanol admixture in the nearer future.

The consecuting theoretical and practical work highlighted the most prominent threats in parallel tasks, namely water-induced phase separation, carburettor icing, vapour locking by gasoline brand mixing, construction material compatibility, and proactive water detection in the fuel system. These threat investigations were flanked by a life cycle analysis on the environmental impacts of ethanol addition to aircraft fuels.

Especially for the vast majority of existing carburettor engines there are various general threats stemming from ethanol-admixed gasolines, potentially leading to disrupted engine operation. Some of them are readily encountered by sensitive operation and increased maintenance efforts, while others may occur rather unexpectedly during a flight mission, even to the point that the engine(s) will stall and not start again, so an unmotored emergency landing has to be performed.

Main issues are

- the material compatibility of hitherto only gasoline-exposed fuel system parts, especially elastomers and sealants,
- the danger of phase separation in water containing gasoline if the fuel is stored for prolonged periods in vented aircraft tanks, and if it is inevitably cooled down during a flight,
- the increased likelihood of a vapour lock due to increased vapour pressure of gasolines mixtures of different ethanol abundancies if the first fuel pressure raising pump is not in a cold section of the fuel system, and the
- carburettor icing due to raised enthalpy of evaporation for ethanol-admixed gasolines if there is no additional heat input into the intake air,

The experiences from vehicle technology may, to a rather great extent, be transferred to the operating conditions of ultralights. Here rather modern engine technology prevails, and the usually

low service ceiling keeps temperature change effects below an acceptable bound. Other types of General Aviation aircraft are more prone to run into difficulties due to their markedly higher service ceiling and the resulting major differences in temperature and ambient pressure, as well as their longer conceptual histories, leading predominantly to material compatibility problems. For those major threats intensive studies and results, as well as respective guidelines, are given in this report. Further recommended activities are listed below.

Material incompabilities should be explicitly addressed in airworthiness qualification and certification processes, even for replacement parts. A comprehensive study of all materials used in the past 50 years for certified aircraft construction is not feasible. Only general guidelines for future material selection or replacement can be given in this report.

A crucial point in phase separation avoidance is a strict proactive control on the occurrence of *solved* water in the gasoline. Unluckily there is no practical and affordable test procedure at hand as of today even though some measurement principles indicate the potential of creating a respective tool.

Life cycle analysis showed that substantial green-house gas (GHG) savings are possible if ethanol is admixed to conventional gasoline in the amounts discussed in this report. This effect is mostly related to the old, but reliable technology and the non-existence of exhaust gas catalyzers in aviation: While the savings through replacing fossil fuel by biogenically produced ethanol are at least detectable the major effect stems from the combustion process itself, as it is cleaner and produces less GHG emissions in the presence of ethanol.

Most of the endangering issues would presumably vanish if butanol would be deployed as biogenic supplement of the fossil fuels as its longer hydrocarbon tail provides much more affinity to the non-polar gasoline majority ingredients. Butanol would exhibit other advantages as well: Compared to ethanol its energy content is larger, and it would presumably have less effect on the vapour pressure if gasolines of different admixture levels are mixed. Presently there is no commercially viable biogenic supply path, even though some promising exploratory efforts exist [16]. Should this alternative of biogenic admixing be pursued in future its effects should be studied in detail in a follow-up project as there is no practical experience on butanol-admixed gasolines deployment in aviation as of today.

The SIOBIA study sheds light on the present status of the most problematic issues with respect to ethanol admixtures in aviation gasoline, but partially only up to the point that further investigations and research should be undertaken to get in-depth and directly practical information. The following topics are suggested for further activities:

- Investigations on the bubble creation behaviour (threat of vapour locking) of a larger number of commercially sold gasolines and their potential mixtures. Different compositions of gasolines are likely to affect the vapour bubble creation, especially so if encountering unforeseen amounts of ethanol due to a mixing of residues in the aircraft's tank. As a result a matrix of potential mixing scenarios should be collected and progressively filled over time as new brands with differing ethanol content appear on the market. The tests should be performed especially with raised temperatures in an dynamic manner, simulating those of common aircraft fuel systems. If possible, a maximum operation temperature and/or maximum service ceiling should be identified and published on a work-in-progress basis on a freely accessible web site.
- Determination of the temperature-depending maximum solved water abundancies for a larger number of commercially sold gasolines, potentially in combination with random

sampling results on water content. The outcome of these investigation could yield a definition of a conservative envelope of tolerable water in gasoline contents. This value is becoming more and more of interest as the bearing capability increases with increasing amount of ethanol there is no normative numerical upper limit of water content in gasolines as of today.

- Quantitative determination of water absorbed out of the tank venting air. Temperature inversion in the tank of a descending aircraft may lead to a significant absorption of humidity due to the rather large air volume throughput rates of venting. Here experiments for temperature and humidity niveau determination, in combination with a theoretical study taking into account knowledge of the atmospheric states and compositions, should be performed to determine quantitative water balances.
- Research and/or development of a practical sensor for water solved in gasoline. The water content of present gasolines is reportedly well above zero and a potential object of future economical optimization with respect to gasoline price fixations as there is no normative quantified upper limit in the gasoline composition definitions. Reported field tests with hydrous E-15 [21], saving the expenses of providing super-azeotropic ethanol provision for gasoline admixing, already point in this direction. As this will foreseeably not create a problem for ground based locomotion, contrary to aviative purposes with its strong temperature decrease in the gasoline tanks, the pilot should be equipped with a practical method of solved water determination.